Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Space-time variational saddle point formulations of Stokes and Navier-Stokes equations
by R. Guberovic and Ch. Schwab and R. Stevenson
(Report number 2011-66)
Abstract
The instationary Stokes and Navier-Stokes equations are considered in a
simultaneously space-time variational saddle point formulation, so involving both velocities ${\bf u}$ and pressure $p$.
For the instationary Stokes problem, it is shown that the corresponding operator is a boundedly invertible linear
mapping between $H_1$ and $H_2'$, both Hilbert spaces $H_1$ and $H_2$ being Cartesian products of (intersections of) Bochner spaces, or duals of those. Based on these results,
the operator that corresponds to the Navier-Stokes equations is shown to map $H_1$ into $H_2'$, with a Fréchet derivative that, at any $({\bf u},p) \in H_1$, is boundedly invertible.
These results are essential for the numerical solution of the combined pair of velocities and pressure as function of simultaneously space and time.
Such a numerical approach allows for the application of (adaptive) approximation from tensor products of spatial and temporal trial spaces, with which the instationary problem can be solved at a computational complexity that is of the order as for a corresponding stationary problem.
Keywords: Instationary Stokes and Navier-Stokes equations, space-time variational saddle point formulation, well-posed operator equation
BibTeX@Techreport{GSS11_115, author = {R. Guberovic and Ch. Schwab and R. Stevenson}, title = {Space-time variational saddle point formulations of Stokes and Navier-Stokes equations}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2011-66}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-66.pdf }, year = {2011} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).