Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
The Partition of Unity Finite Element Method: Basic Theory and Applications
by J. M. Melenk and I. Babuska
(Report number 1996-01)
Abstract
The paper presents the basic ideas and the mathematical foundation of the partition of unity finite element method (\PU). We will show how the \PU can be used to employ the structure of the differential equation under consideration to construct effective and robust methods. Although the method and its theory are valid in emn/em dimensions, a detailed and illustrative analysis will be given for a one dimensional model problem. We identify some classes of non-standard problems which can profit highly from the advantages of the \PU and conclude this paper with some open questions concerning implementational aspects of the \PU.
Keywords: Finite element method, meshless finite element method, robust finite element methods, finite element methods for highly oscillatory solutions
BibTeX@Techreport{MB96_184, author = {J. M. Melenk and I. Babuska}, title = {The Partition of Unity Finite Element Method: Basic Theory and Applications}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {1996-01}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1996/1996-01.pdf }, year = {1996} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).