> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Quadrature for hp-Galerkin BEM in R3

by S. A. Sauter and Ch. Schwab

(Report number 1996-02)

Abstract
The Galerkin discretization of a Fredholm integral equation of the second kind on a closed, piecewise analytic surface $\Gamma \subset \hbox{\sf l\kern-.13em R}^3$ is analyzed. High order, emhp-/emboundary elements on grids which are geometrically graded toward the edges and vertices of the surface give exponential convergence, similar to what is known in the emhp/em -Finite Element Method. A quadrature strategy is developed which gives rise to a fully discrete scheme preserving the exponential convergence of the emhp/em-Boundary Element Method. The total work necessary for the consistent quadratures is shown to grow algebraically with the number of degrees of freedom. Numerical results on a curved polyhedron show exponential convergence with respect to the number of degrees of freedom as well as with respect to the CPU-time.

Keywords: emhp/em Finite Element, Boundary Element Method, Numerical Integration, exponential convergence

BibTeX
@Techreport{SS96_185,
  author = {S. A. Sauter and Ch. Schwab},
  title = {Quadrature for hp-Galerkin BEM in R3},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {1996-02},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1996/1996-02.pdf },
  year = {1996}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser