Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Numerical integration of differential algebraic systems and invariant manifolds
by K. Nipp
(Report number 1999-12)
Abstract
The dynamics of a differential algebraic equation takes place on a lower dimensional manifold in phase space. Applying a numerical integration scheme, it is natural to ask if and how this geometric property is preserved by the discrete dynamical system. In the index-1 case answers to this question are obtained from the singularly perturbed case treated in [6] for Runge-Kutta methods and in [7] for linear multistep methods. As main result, it is shown that also for Runge-Kutta methods and linear multistep methods applied to an index-2 problem of Hessenberg form there is a (attractive) invariant manifold for the discrete dynamical system and this manifold is close to the manifold of the differential algebraic equation.
Keywords:
BibTeX@Techreport{N99_247, author = {K. Nipp}, title = {Numerical integration of differential algebraic systems and invariant manifolds}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {1999-12}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1999/1999-12.pdf }, year = {1999} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).