Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
The hp-Version of the Streamline Diffusion Finite Element Method in Two Space Dimensions
by K. Gerdes and j. M. Melenk and D. Schötzau and Ch. Schwab
(Report number 1999-17)
Abstract
The Streamline Diffusion Finite Element Method (SDFEM) for a two dimensional convection-diffusion problem is analyzed in the context of the hp-version of the Finite Element Method (FEM). It is proved that the appropriate choice of the SDFEM parameters leads to stable methods on the class of "boundary layer meshes" which may contain anisotropic needle elements of arbitrarily high aspect ratio. Consistency results show that the use of such meshes can resolve layer components present in the solutions at robust exponential rates of convergence. We confirm these theoretical results in a series of numerical examples.
Keywords: Streamline Diffusion Methods, hp Finite Element Methods
BibTeX@Techreport{GMSS99_251, author = {K. Gerdes and j. M. Melenk and D. Sch\"otzau and Ch. Schwab}, title = {The hp-Version of the Streamline Diffusion Finite Element Method in Two Space Dimensions}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {1999-17}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1999/1999-17.pdf }, year = {1999} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).