> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Boundary Element Methods for Maxwell Equations in Lipschitz Domains

by A. Buffa and R. Hiptmair and T. von Petersdorff and Ch. Schwab

(Report number 2001-05)

Abstract
We consider the Maxwell equations in a domain with Lipschitz boundary and the boundary integral operator A occuring in the Calderon projector. We prove an inf-sup condition for A using a Hodge decomposition. We apply this to two types of boundary value problems: the exterior scattering problem by a perfectly conducting body, and the dielectric problem with two different materials in the interior and exterior domain. In both cases we obtain an equivalent boundary equation which has a unique solution. We then consider Galerkin discretizations with Raviart-Thomas spaces. We show that these spaces have discrete Hodge decompositions which are in some sense close to the continuous Hodge decomposition. This property allows us to prove quasioptimal convergence of the resulting boundary element methods.

Keywords:

BibTeX
@Techreport{BHvS01_282,
  author = {A. Buffa and R. Hiptmair and T. von Petersdorff and Ch. Schwab},
  title = {Boundary Element Methods for Maxwell Equations in Lipschitz Domains},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2001-05},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2001/2001-05.pdf },
  year = {2001}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser