Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Sparse Finite Elements for Elliptic Problems with Stochastic Data
by Ch. Schwab and R.-A. Todor
(Report number 2002-05)
Abstract
We formulate elliptic boundary value problems with stochastic loading in a domain D. We show well-posedness of the problem in stochastic Sobolev spaces and we derive then a deterministic elliptic PDE in DxD for the spatial correlation of the solution. We show well-posedness and regularity results for this PDE in a scale of weighted Sobolev spaces with mixed highest order derivatives. Discretization with sparse tensor products of any hierarchic FE space in D yields optimal asymptotic rates of convergence for the second moments even in the presence of singularities or for spatially completely uncorrelated data. Multilevel preconditioning in DxD allows iterative solution of the discrete equations for the correlation kernel in essentially the same complexity as the solution of the mean field equation.
Keywords:
BibTeX@Techreport{ST02_291, author = {Ch. Schwab and R.-A. Todor}, title = {Sparse Finite Elements for Elliptic Problems with Stochastic Data}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2002-05}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2002/2002-05.pdf }, year = {2002} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).