Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Rapid solution of first kind boundary integral equations in R^3
by G. Schmidlin and C. Lage and Ch. Schwab
(Report number 2002-07)
Abstract
Weakly singular boundary integral equations (BIEs) of the first kind on polyhedral surfaces \Gamma in IR3 are discretized by Galerkin BEM on shape-regular, but otherwise unstructured meshes of meshwidth h. Strong ellipticity of the integral operator is shown to give nonsingular stiffness matrices and, for piecewise constant approximations, up to O(h3) convergence of the farfield. The condition number of the stiffness matrix behaves like O(h-1) in the standard basis. An O(N) agglomeration algorithm for the construction of a multilevel wavelet basis on \Gamma is introduced resulting in a preconditioner which reduces the condition number to O(| log h|). A class of kernel-independent clustering algorithms (containing the fast multipole method as special case) is introduced for approximate matrix-vector multiplication in O(N(log N)3) memory and operations. Iterative approximate solution of the linear system by CG or GMRES with wavelet preconditioning and clustering-acceleration of matrix-vector multiplication is shown to yield an approximate solution in log-linear complexity which preserves the O(h3) convergence of the potentials. Numerical experiments are given which confirm the theory.
Keywords:
BibTeX@Techreport{SLS02_293, author = {G. Schmidlin and C. Lage and Ch. Schwab}, title = {Rapid solution of first kind boundary integral equations in R^3}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2002-07}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2002/2002-07.pdf }, year = {2002} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).