> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Mixed boundary element method for eddy current problems

by S. H. Christiansen

(Report number 2002-16)

Abstract
We propose a mixed boundary element method for the eddy current problem. It involves two divergence conforming tangent fields on the surface. The zero divergence condition on one of them is enforced with scalar Lagrange multipliers. An LBB Inf-Sup condition is proved for the resulting discrete saddle-point problem, leading to quasi-optimal convergence rates.

Keywords:

BibTeX
@Techreport{C02_302,
  author = {S. H. Christiansen},
  title = {Mixed boundary element method for eddy current problems},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2002-16},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2002/2002-16.pdf },
  year = {2002}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser