Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Theoretical study of axisymmeetrical triple flame
by M. Savelieva
(Report number 2002-26)
Abstract
We study the axysymmetrical triple flame, that could be observed at the base of the laminar diffusion lifted flame. The study of this flame has been done by S.Ghosal and L.Vervisch, who applied the two-dimensional approach for the flame that axisymmetrical in fact. The experiments reveal us the necessity to investigate the influence of the radius of the flame base on the behaviour (i.e. such important characteristics as stability and velocity) of the whole structure. Both constant- and variable-density case are considered. Instead of solving a free-boundary problem for the flame surface, we approximate it with a help of parabolic profile, the curvature to be self-consistently determined. This method, called by Ghosal and Vervisch "the parabolic flame path approximation", has shown his validity for planar case, and we would like to expand this result for the axisymmetric flame. The method of matched asymptotic expansions in parabolic-cylinder coordinates will be applied, and the closed expressions for the flame curvature and velocity, as well as the temperature field, will be given. We compare this theoretical results with those J. Boulanger, L. Vervisch, J. Reveillon and S. Ghosal got with by DNS (direct numerical simulations).
Keywords:
BibTeX@Techreport{S02_312, author = {M. Savelieva}, title = {Theoretical study of axisymmeetrical triple flame}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2002-26}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2002/2002-26.pdf }, year = {2002} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).