> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

On Kolmogorov equations for anisotropic multivariate Lévy processes

by N. Reich and Ch. Schwab and C. Winter

(Report number 2008-03)

Abstract
For d-dimensional exponential Lévy models, variational formulations of the Kolmogorov equations arising in asset pricing are derived. Well-posedness of these equations is verified. Particular attention is paid to pure jump, d variate Lévy processes built from parametric, copula dependence models in their jump structure. The domains of the associated Dirichlet forms are shown to be certain anisotropic Sobolev spaces. Representations of the Dirichlet forms are given which remain bounded for piecewise polynomial, continuous functions of finite element type. We prove that the variational problem can be localized to a bounded domain with explicit localization error bounds. Furthermore, we collect several analytical tools for further numerical analysis.

Keywords: Lévy-copulas, Lévy processes, integrodifferential equations, pseudo differential operators, Dirichlet forms, option pricing

BibTeX
@Techreport{RSW08_369,
  author = {N. Reich and Ch. Schwab and C. Winter},
  title = {On Kolmogorov equations for anisotropic multivariate Lévy processes},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2008-03},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2008/2008-03.pdf },
  year = {2008}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser