Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Self-adjoint curl operators
by R. Hiptmair and P. Kotiuga and S. Tordeux
(Report number 2008-27)
Abstract
We study the exterior derivative as a symmetric unbounded operator on square integrable 1-forms on a 3D bounded domain $D$. We aim to identify boundary conditions that render this operator self-adjoint. By the symplectic version of the Glazman-Krein-Naimark theorem this amounts to identifying complete Lagrangian subspaces of the trace space of $H(curl, D)$ equipped with a symplectic pairing arising from the $\wedge$-product of 1-forms on $\partial D$. Substantially generalizing earlier results, we characterize Lagrangian subspaces associated with closed and co-closed traces. In the case of non-trivial topology of the domain, different contributions from co-homology spaces also distinguish different self-adjoint extension. Finally, all self-adjoint extensions discussed in the paper are shown to possess a discrete point spectrum, and their relationship with $curl curl$-operators is discussed.
Keywords:
BibTeX@Techreport{HKT08_37, author = {R. Hiptmair and P. Kotiuga and S. Tordeux}, title = {Self-adjoint curl operators}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2008-27}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2008/2008-27.pdf }, year = {2008} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).