Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
How to make Simpler GMRES and GCR more stable
by P. Jiranek and M. Rozloznik and M. H. Gutknecht
(Report number 2008-10)
Abstract
In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution (similar to GMRES) in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a simple recursion formula. We show that a different choice of the basis can significantly influence the numerical behavior of the resulting implementation. While Simpler GMRES and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a new implementation, which is conditionally backward stable, and, in a sense they explain the experimentally observed fact that the GCR (ORTHOMIN) method delivers very accurate approximate solutions when it converges fast enough without stagnation.
Keywords: Large-scale nonsymmetric linear systems, Krylov subspace methods, minimum residual methods, numerical stability, rounding errors.
BibTeX@Techreport{JRG08_375, author = {P. Jiranek and M. Rozloznik and M. H. Gutknecht}, title = {How to make Simpler GMRES and GCR more stable}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2008-10}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2008/2008-10.pdf }, year = {2008} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).