> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Asymptotic modelling of conductive thin sheets

by K. Schmidt and S. Tordeux

(Report number 2008-28)

Abstract
We derive and analyse models which reduce conducting sheets of a small thickness $\epsilon$ in two dimensions to an interface and approximate their shielding behaviour by conditions on this interface. For this we consider a model problem with a conductivity scaled reciprocal to the thickness $\epsilon$, which leads a nontrivial limit solution for $\epsilon\to0$. The functions of the expansion are defined hierarchically, i.e. order by order. Our analysis shows that for smooth sheets the model are well defined for any order and have optimal convergence meaning that the $H^1$-modelling error for an expansion with $N$~terms is bounded by $O(\epsilon^{N+1})$ in the exterior of the sheet and by $O(\epsilon^{N+1/2})$ in the interior. We explicitly specify the models of order zero, one and two. Numerical experiments for sheets with varying curvature validate the theoretical results.

Keywords:

BibTeX
@Techreport{ST08_391,
  author = {K. Schmidt and S. Tordeux},
  title = {Asymptotic modelling of conductive thin sheets},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2008-28},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2008/2008-28.pdf },
  year = {2008}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser