Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM
by R. Hiptmair and A. Moiola and I. Perugia and Ch. Schwab
(Report number 2012-38)
Abstract
We study the approximation of harmonic functions by means of harmonic polynomials in twodimensional, bounded, star-shaped domains. Assuming that the functions possess analytic extensions to a $\delta$-neighbourhood of the domain, we prove exponential convergence of the approximation error with respect to the degree of the approximating harmonic polynomial. All the constants appearing in the bounds are explicit and depend only on the shape-regularity of the domain and on $\delta$. We apply the obtained estimates to show exponential convergence with rate $O(exp(-b\sqrt{N}))$, $N$ being the number of degrees of freedom and $b > 0$, of a hp-dGFEM discretisation of the Laplace equation based on piecewise harmonic polynomials. This result is an improvement over the classical rate $O(exp(-b ^3\sqrt{N}))$, and is due to the use of harmonic polynomial spaces, as opposed to complete polynomial spaces.
Keywords:
BibTeX@Techreport{HMPS12_487, author = {R. Hiptmair and A. Moiola and I. Perugia and Ch. Schwab}, title = {Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2012-38}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-38.pdf }, year = {2012} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).