Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Jost Bürgi and the discovery of the logarithms
by J. Waldvogel
(Report number 2012-43)
Abstract
In the year 1620 the printing office of the University of Prague published a 58-page table containing the values \(a_n = (1.0001)^n\) for \(0 \le n \le 23027\), rounded to 9 decimal digits. This table had been devised and computed about 20 years earlier by the Swiss-born astronomer and watchmaker Jost Bürgi in order to facilitate the multi-digit multiplications and divisions he needed for his astronomical computations. The "Progress Tabulen", as Bürgi called his tables, are considered to be one of the two independent appearances of the logarithms in the history of mathematics - the other one, due to John Napier (1550-1617), appeared in 1614.
There are only a few copies of the original printing extant: one of them is now in the Astronomisch-Physikalisches Kabinett in Munich. Based on a copy of this original, the terminal digits of all table entries were extracted and compared with the exact values of \(a_n\), a matter of a split second on a modern computer.
In this presentation we give a brief account of the mathematical environment at the end of the 16th century as well as a detailed description of Bürgi's Progress Tabulen and their application to numerical computations. We will also give a sketch of Bürgi's remarkable life and of his numerous achievements besides the discovery of the logarithms.
Our main purpose, however, is to analyze the numerical errors in Bürgi's table. First of all, there are no systematic errors, e.g.~the crux of the table, \(1.0001{23027.0022}^ = 10\), is correct with all digits given. 91.5% of the table entries are entirely correct, and 7.3% of the values show round-off errors between 0.5 and 1 unit of the least significant digit. The remaining 1.17% table errors are mainly errors of transcription and illegible digits.
Statistics of the round-off errors leads to interesting conclusions concerning Bürgi's algorithms of generating his table and on his handling of the round-off errors, as well as on the computational effort involved.
Keywords: none
BibTeX@Techreport{W12_496, author = {J. Waldvogel}, title = {Jost B\"urgi and the discovery of the logarithms}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2012-43}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2012/2012-43.pdf }, year = {2012} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).