Research reports
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Space-time wavelet FEM for parabolic equations
by R. Andreev
(Report number 2010-20)
Abstract
For a class of linear parabolic equations we propose a nonadaptive sparse space-time Galerkin least squares discretization. We formulate criteria on the trial and test spaces for the well-posedness of the corresponding Galerkin least squares solution. In order to obtain discrete stability uniformly in the discretization parameters, we allow test spaces which are suitably larger than the trial space. The problem is then reduced to a finite, overdetermined linear system of equations by a choice of bases. We present several strategies that render the resulting normal equations well-conditioned uniformly in the discretization parameters. The numerical solution is then shown to converge quasi-optimally to the exact solution in the natural space for the original equation. Numerical examples for the heat equation confirm the theory.
Keywords:
BibTeX@Techreport{A10_50, author = {R. Andreev}, title = {Space-time wavelet FEM for parabolic equations}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2010-20}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2010/2010-20.pdf }, year = {2010} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).