Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Sparse-Grid, Reduced-Basis Bayesian Inversion
by P. Chen and Ch. Schwab
(Report number 2014-36)
Abstract
We analyze reduced basis acceleration of recently proposed deterministic Bayesian inversion algorithms for partial differential equations with uncertain distributed parameter, for observation data subject to
additive, Gaussian observation noise. Specifically, Bayesian inversion of affine-parametric, linear operator families on possibly high-dimensional parameter spaces. We consider `high-fidelity'' Petrov-Galerkin (PG) discretizations of these {countably-}parametric operator families: {we allow} general families of inf-sup stable, PG Finite-Element methods, covering most conforming primal and mixed Finite-Element discretizations of standard problems in mechanics. Reduced basis acceleration of the
high-dimensional, parametric forward response maps which {need to be} numerically solved numerous times in Bayesian inversion is proposed and convergence rate bounds for the error in the Bayesian estimate incurred by the use of reduced bases are derived. As consequence of recent theoretical results
on dimension-independent sparsity of parametric responses, and preservation of sparsity for holomorphic-parametric problems, we establish new convergence rates of greedy reduced basis
approximations for both, the parametric forward maps as well as for the countably-parametric
posterior densities which arise in Bayesian inversion. We show that the convergence rates for the
reduced basis approximations of the parametric forward maps as well as of the countably-parametric,
deterministic Bayesian posterior densities are free from the curse of dimensionality and depend only
on the sparsity of the uncertain input data. In particular, we establish the quadratic convergence of the
reduced basis approximation for the posterior densities with respect to that for the parametric forward maps. Numerical experiments for model elliptic, affine-parametric problems in two space dimensions with hundreds of parameters {are reported} which confirm that the proposed adaptive, {deterministic}
reduced basis algorithms indeed exploit sparsity of both, the parametric forward maps as well as the Bayesian posterior density.
Keywords: Parametric Operator Equations, Bayesian Inversion, Reduced Basis, Sparse Grid, A Posteriori Error Estimate, A Priori Error Estimate, Best $N$-term Convergence, Curse of Dimensionality
BibTeX@Techreport{CS14_586, author = {P. Chen and Ch. Schwab}, title = {Sparse-Grid, Reduced-Basis Bayesian Inversion}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2014-36}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-36.pdf }, year = {2014} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).