Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
An A Priori Error Estimate for Interior Penalty Discretizations of the Curl-Curl Operator on Non-Conforming Meshes
by R. Casagrande and R. Hiptmair
(Report number 2014-40)
Abstract
We prove an a-priori error estimate for conductivity-regularized Curl-Curl Problems which are discretized by the Interior Penalty/Nitsche's Method on meshes non-conforming across interfaces.
It is shown that the total error can be bounded by the best approximation error which in turn depends on the concrete choice of the approximation space \(V_h\).
In this work we show that if \(V_h\) is the space of edge functions of the first kind of order \(k\) we can expect (suboptimal) convergence \(O(h^{k-1})\) as the mesh is refined.
The numerical experiments in Casagrande, Winkelmann, Hiptmair and Ostrowski, SAM Report 2014-32, ETH Z�rich, indicate that this bound is sharp for \(k=1\).
Moreover it is shown that the regularization term can be made arbitrarily small without affecting the error in the \(|\cdot|_{curl}\) semi-norm.
A numerical experiment shows that the regularization parameter can be chosen in a wide range of values such that, at the same time, the discrete problem remains solvable and the error due to regularization is negligible compared to the discretization error.
Keywords: Discontinuous Galerkin, Sliding Interface, Non-Conforming Mesh, FEM, Magnetostatics, Curl-Curl Operator, Interior Penalty
BibTeX@Techreport{CH14_590, author = {R. Casagrande and R. Hiptmair}, title = {An A Priori Error Estimate for Interior Penalty Discretizations of the Curl-Curl Operator on Non-Conforming Meshes}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2014-40}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2014/2014-40.pdf }, year = {2014} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).