Research reports
Childpage navigation
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Approximation methods for piecewise deterministic Markov processes and their costs
by P. Kritzer and G. Leobacher and M. Szölgyenyi and S. Thonhauser
(Report number 2017-58)
Abstract
In this paper, we analyse piecewise deterministic Markov processes, as introduced
in Davis (1984).
Many models in insurance mathematics can be formulated in terms
of the general concept of piecewise deterministic Markov processes.
In this context, one is interested in computing certain quantities of interest such as the probability of ruin of an insurance company, or the insurance company's value, defined as the expected discounted future dividend payments until the time of ruin.
Instead of explicitly solving the integro-(partial) differential
equation related to the quantity of interest considered (an approach which can only be used in few special cases),
we adapt the problem in a manner that allows us to apply deterministic numerical integration algorithms such
as quasi-Monte Carlo rules; this is in contrast to applying random integration algorithms such as Monte Carlo.
To this end, we reformulate a general cost functional as a fixed point of a particular integral operator, which allows for iterative
approximation of the functional. Furthermore, we introduce a smoothing technique which is applied to the
integrands involved, in order to use error bounds for deterministic cubature rules.
On the analytical side, we prove a convergence result for our PDMP approximation,
which is of independent interest as it justifies phase-type approximations on the process level.
We illustrate the smoothing technique for a risk-theoretic example, and provide a
comparative study of deterministic and Monte Carlo
integration.
Keywords: risk theory, piecewise deterministic Markov process, quasi-Monte Carlo methods, phase-type approximations, dividend maximisation
BibTeX@Techreport{KLST17_754, author = {P. Kritzer and G. Leobacher and M. Sz\"olgyenyi and S. Thonhauser}, title = {Approximation methods for piecewise deterministic Markov processes and their costs}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2017-58}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2017/2017-58.pdf }, year = {2017} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).