Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Time discretization of parabolic boundary integral equations
by Ch. Lubich and R. Schneider
(Report number 1991-08)
Abstract
In time-dependent boundary integral equations, a boundary element me\-thod in space can be coupled with a different type of discretization in time. For the latter a procedure based on linear multistep methods is proposed, which is applicable whenever the Laplace transform of the fundamental solution is known. The stability properties of the method are obtained from those of the underlying multistep method. In the absence of a space discretization, the numerical solution given by the proposed method is identical to that of a semi-discretization in time of the partial differential equation by the under\-lying multistep method. The theory is presented for the single layer potential equation of the heat equation. Convergence estimates, which are pointwise in time and expressed in terms of the boundary data, are obtained for full discretizations using Galerkin or collocation boundary element methods in space. Numerical examples are included.
Keywords: boundary integral equation, parabolic differentialequation, convolution quadrature, multistep method, boundary element method, Galerkin, collocation, parameter-dependent pseudodifferential calculus
BibTeX@Techreport{LS91_8, author = {Ch. Lubich and R. Schneider}, title = {Time discretization of parabolic boundary integral equations}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {1991-08}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports1991/1991-08.pdf }, year = {1991} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).