Research reports

Deep learning observables in computational fluid dynamics

by K. Lye and S. Mishra and R. Deep

(Report number 2019-13)

Abstract
Many large scale problems in computational fluid dynamics such as uncertainty quantification, Bayesian inversion, data assimilation and PDE constrained optimization are considered very challenging computationally as they require a large number of expensive (forward) numerical solutions of the corresponding PDEs. We propose a machine learning algorithm, based on deep artificial neural networks, that predicts the underlying \emph{input parameters to observable} map from a few training samples (computed realizations of this map). By a judicious combination of theoretical arguments and empirical observations, we find suitable network architectures and training hyperparameters that result in robust and efficient neural network approximations of the parameters to observable map. Numerical experiments are presented to demonstrate low prediction errors for the trained network networks, even when the network has been trained with a few samples, at a computational cost which is several orders of magnitude lower than the underlying PDE solver. Moreover, we combine the proposed deep learning algorithm with Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods to efficiently compute uncertainty propagation for nonlinear PDEs. Under the assumption that the underlying neural networks generalize well, we prove that the deep learning MC and QMC algorithms are guaranteed to be faster than the baseline (quasi-) Monte Carlo methods. Numerical experiments demonstrating one to two orders of magnitude speed up over baseline QMC and MC algorithms, for the intricate problem of computing probability distributions of the observable, are also presented.

Keywords: machine learning, uncertainty quantification, hyperbolic conservation laws

BibTeX
@Techreport{LMD19_817,
  author = {K. Lye and S. Mishra and R. Deep},
  title = {Deep learning observables in computational fluid dynamics},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2019-13},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2019/2019-13.pdf },
  year = {2019}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser