Research reports
Childpage navigation
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Deep learning observables in computational fluid dynamics
by K. Lye and S. Mishra and R. Deep
(Report number 2019-13)
Abstract
Many large scale problems in computational fluid dynamics such as uncertainty quantification, Bayesian inversion, data assimilation and PDE constrained optimization are considered very challenging computationally as they require a large number of expensive (forward) numerical solutions of the corresponding PDEs. We propose a machine learning algorithm, based on deep artificial neural networks, that predicts the underlying \emph{input parameters to observable} map from a few training samples (computed realizations of this map). By a judicious combination of theoretical arguments and empirical observations, we find suitable network architectures and training hyperparameters that result in robust and efficient neural network approximations of the parameters to observable map. Numerical experiments are presented to demonstrate low prediction errors for the trained network networks, even when the network has been trained with a few samples, at a computational cost which is several orders of magnitude lower than the underlying PDE solver.
Moreover, we combine the proposed deep learning algorithm with Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods to efficiently compute uncertainty propagation for nonlinear PDEs. Under the assumption that the underlying neural networks generalize well, we prove that the deep learning MC and QMC algorithms are guaranteed to be faster than the baseline (quasi-) Monte Carlo methods. Numerical experiments demonstrating one to two orders of magnitude speed up over baseline QMC and MC algorithms, for the intricate problem of computing probability distributions of the observable, are also presented.
Keywords: machine learning, uncertainty quantification, hyperbolic conservation laws
BibTeX@Techreport{LMD19_817, author = {K. Lye and S. Mishra and R. Deep}, title = {Deep learning observables in computational fluid dynamics}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2019-13}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2019/2019-13.pdf }, year = {2019} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).