Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems
by L. Herrmann and M. Keller and Ch. Schwab
(Report number 2019-41)
Abstract
We analyze rates of convergence for quasi-Monte Carlo (QMC) integration for Bayesian inversion of linear, elliptic PDEs with uncertain input from function spaces. Adopting a Riesz or Schauder basis representation of the uncertain inputs, function space priors are constructed as product measures on spaces of (sequences of) coefficients in the basis representations. The numerical approximation of the posterior expectation, given data, then amounts to a high- or infinite-dimensional numerical integration problem. We consider in particular so-called \emph{Besov priors} on the admissible uncertain inputs. We extend the QMC convergence theory from the Gaussian case,
and in particular establish sufficient conditions on the uncertain
inputs for achieving dimension-independent convergence rates \(>1/2\) of QMC integration with randomly shifted lattice rules. We apply the theory to a concrete class of linear, 2nd order elliptic boundary value problems with log-Besov uncertain diffusion coefficient.
Keywords: Quasi-Monte Carlo methods, Bayesian inverse problems, Besov priors, high-dimensional integration, elliptic partial differential equations
BibTeX@Techreport{HKS19_845, author = {L. Herrmann and M. Keller and Ch. Schwab}, title = {Quasi-Monte Carlo Bayesian estimation under Besov priors in elliptic inverse problems}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2019-41}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2019/2019-41.pdf }, year = {2019} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).