Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients
by F.Y. Kuo and Ch. Schwab and I. H. Sloan
(Report number 2011-52)
Abstract
In this paper quasi-Monte Carlo (QMC) methods are applied to a class of elliptic partial differential equations (PDEs) with random coefficients, where the random coefficient is parametrized by a countably innite number of terms in a Karhunen-Loève expansion. Models of this kind appear frequently in numerical models of physical systems, and in uncertainty quantification. The method uses a QMC method to estimate expected values of linear functionals of the exact or approximate solution of the PDE, with the expected value considered as an infinite dimensional integral in the parameter space corresponding to the randomness induced by the random coefficient. The analysis exploits the regularity with respect to both the physical variables (the variables in the physical domain) and the parametric variables (the parameters corresponding to randomness). As is common for the analysis of QMC methods, "weights", describing the varying difficulty of different subsets of the variables, are needed in the analysis in order to make sure that the infinite dimensional integration problem is tractable. It turns out that the weights arising from the present analysis are of a non-standard kind, being of neither product nor order dependent form, but instead a hybrid of the two - we refer to these as "product and order dependent weights", or "POD weights" in short. Nevertheless these POD weights are of a simple enough form to permit a component-by-component construction of a randomly shifted lattice rule that has optimal convergence properties for the given weighted space setting. If the terms in the expansion for the random coefficient have an appropriate decay property, and if we choose (POD) weights that minimize a certain upper bound on the error, then the solution of the PDE belongs to the joint function space needed for the analysis, and the QMC error (in the sense of a root-mean-square error averaged over shifts) is of order O(N^(-1+/delta)) for arbitrary /delta>0, where N denotes the number of sampling points in the parameter space. Moreover, for convergence rates less than 1, the conditions under which various convergence rates are achieved are exactly those found in a recent study by Cohen, De Vore and Schwab of the same model by best N-term approximations. We analyze the impact of a finite element (FE) discretization on the overall efficiency of the scheme.
Keywords: quasi-Monte Carlo methods, infinite dimensional integration, elliptic partial differential equations with random coefficients, Karhunen-Loève expansion, finite element methods
BibTeX@Techreport{KSS11_85, author = {F.Y. Kuo and Ch. Schwab and I. H. Sloan}, title = {Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2011-52}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-52.pdf }, year = {2011} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).