Research reports
Childpage navigation
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities
by M. Hutzenthaler and A. Jentzen and Th. Kruse
(Report number 2019-63)
Abstract
Partial differential equations (PDEs) are a fundamental tool in the modeling of many real world phenomena. In a number of such real world phenomena the PDEs under consideration contain gradient-dependent nonlinearities and are high-dimensional. Such high-dimensional nonlinear PDEs can in nearly all cases not be solved explicitly and it is one of the most challenging tasks in applied mathematics to solve high-dimensional nonlinear PDEs approximately. It is especially very challenging to design approximation algorithms for nonlinear PDEs for which one can rigorously prove that they do overcome the so-called curse of dimensionality in the sense that the number of computational operations of the approximation algorithm needed to achieve an approximation precision of size ε>0 grows at most polynomially in both the PDE dimension d∈N and the reciprocal of the prescribed approximation accuracy ε. In particular, to the best of our knowledge there exists no approximation algorithm in the scientific literature which has been proven to overcome the curse of dimensionality in the case of a class of nonlinear PDEs with general time horizons and gradient-dependent nonlinearities. It is the key contribution of this article to overcome this difficulty. More specifically, it is the key contribution of this article (i) to propose a new full-history recursive multilevel Picard approximation algorithm for high-dimensional nonlinear heat equations with general time horizons and gradient-dependent nonlinearities and (ii) to rigorously prove that this full-history recursive multilevel Picard approximation algorithm does indeed overcome the curse of dimensionality in the case of such nonlinear heat equations with gradient-dependent nonlinearities.
Keywords:
BibTeX@Techreport{HJK19_867, author = {M. Hutzenthaler and A. Jentzen and Th. Kruse}, title = {Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2019-63}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2019/2019-63.pdf }, year = {2019} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).