Research reports
Childpage navigation
Years: 2025 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Analyticity and hp discontinuous Galerkin approximation of nonlinear Schrödinger eigenproblems
by Y. Maday and C. Marcati
(Report number 2019-69)
Abstract
We study a class of nonlinear eigenvalue problems of Schrödinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined hp discontinuous Galerkin (dG) method.
We show that, for weighted analytic potentials and for up-to-quartic nonlinearities, the eigenfunctions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a
priori estimates on the error of the dG finite element method; when using an isotropically refined hp space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. In addition, we investigate the role of pointwise convergence in the doubling of the convergence rate for the eigenvalues with respect to the convergence rate of eigenfunctions. We conclude with a series of numerical tests to validate the theoretical results.
Keywords: Nonlinear Schrödinger equation, analytic regularity, exponential convergence, finite element method.
BibTeX@Techreport{MM19_873, author = {Y. Maday and C. Marcati}, title = {Analyticity and hp discontinuous Galerkin approximation of nonlinear Schr\"odinger eigenproblems}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2019-69}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2019/2019-69.pdf }, year = {2019} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).