> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems

by H. Ammari and Y.T. Chow and H. Liu

(Report number 2020-01)

Abstract
In this paper, we are concerned with the recovery of the geometric shapes of inhomogeneous inclusions from the associated far field data in electrostatics and acoustic scattering. We present a local resolution analysis and show that the local shape around a boundary point with a high magnitude of mean curvature can be reconstructed more easily and stably. In proving this, we develop a novel mathematical scheme by analyzing the generalized polarisation tensors (GPTs) and the scattering coefficients (SCs) coming from the associated scattered fields, which in turn boils down to the analysis of the layer potential operators that sit inside the GPTs and SCs via microlocal analysis. In a delicate and subtle manner, we decompose the reconstruction process into several steps, where all but one steps depend on the global geometry, and one particular step depends on the mean curvature at a given boundary point. Then by a sensitivity analysis with respect to local perturbations of the curvature of the boundary surface, we establish the local resolution effects. Our study opens up a new field of mathematical analysis on wave super-resolution imaging.

Keywords: electrostatics and wave scattering, inverse inclusion problems, mean curvature, localized sensitivity, super-resolution, layer potential operators, microlocal analysis

BibTeX
@Techreport{ACL20_874,
  author = {H. Ammari and Y.T. Chow and H. Liu},
  title = {Localized sensitivity analysis at high-curvature boundary points of reconstructing inclusions in transmission problems},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2020-01},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-01.pdf },
  year = {2020}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser