Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Sparse discrete ordinates method in radiative transfer
by K. Grella and Ch. Schwab
(Report number 2011-46)
Abstract
The stationary monochromatic radiative transfer equation (RTE) is a partial differential transport equation stated on a five-dimensional phase space, the Cartesian product of physical and angular domain. We solve the RTE with a Galerkin FEM in physical space and collocation in angle, corresponding to a discrete ordinates method (DOM). To reduce the complexity of the problem and to avoid the "curse of dimension", we adapt the sparse grid combination technique to the solution space of the RTE and show that we obtain a sparse DOM which uses essentially only as many degrees of freedom as required for a purely spatial transport problem. For smooth solutions, the convergence rates deteriorate only by a logarithmic factor. We compare the sparse DOM to the standard full DOM and a sparse tensor product approach developed earlier with Galerkin FEM in physical space and a spectral method in angle. Numerical experiments confirm our findings.
Keywords: Radiative transfer, discrete ordinates method, combination technique, sparse grids
BibTeX@Techreport{GS11_88, author = {K. Grella and Ch. Schwab}, title = {Sparse discrete ordinates method in radiative transfer}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2011-46}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-46.pdf }, year = {2011} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).