Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Super-resolution in recovering embedded electromagnetic sources in high contrast media
by H. Ammari and B. Li and J. Zou
(Report number 2020-08)
Abstract
The purpose of this work is to provide a rigorous mathematical analysis of the expected super-resolution phenomenon in the time-reversal imaging of electromagnetic (EM) radiating sources embedded in a high contrast medium. It is known that the resolution limit is essentially determined by the sharpness of the imaginary part of
the EM Green's tensor for the associated background. We first establish the close connection between the resolution
and the material parameters and the resolvent of the electric integral operator, via the Lippmann-Schwinger representation formula. We then present an insightful characterization of the spectral structure of the integral operator for a general bounded domain and derive the pole-pencil decomposition of its resolvent in the high contrast regime. For the special case of a spherical domain, we provide some quantitative asymptotic behavior of the eigenvalues and eigenfunctions. These mathematical findings shall enable us to provide a concise and rigorous illustration of
the super-resolution in the EM source reconstruction in high contrast media. Some numerical examples are also
presented to verify our main theoretical results.
Keywords: super-resolution, high-contrast medium, electromagnetic imaging.
BibTeX@Techreport{ALZ20_881, author = {H. Ammari and B. Li and J. Zou}, title = {Super-resolution in recovering embedded electromagnetic sources in high contrast media}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2020-08}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-08.pdf }, year = {2020} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).