Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Quotient-Space Boundary Element Methods for Scattering at Complex Screens
by X. Claeys and L. Giacomel and R. Hiptmair and C. Urzua-Torres
(Report number 2020-11)
Abstract
A complex screen is an arrangement of panels that may not be even locally orientable because of junction lines. A comprehensive trace space framework for first-kind variational boundary integral equations on complex screens has been established in \([\) X. Claeys and R. Hiptmair, Integral equations on multi-screens, Integral Equations and Operator Theory, 77 (2013), pp. 167-197\(]\) for the Helmholtz equation, and in \([\) X. Claeys and R. Hiptmair, Integral equations for electromagnetic scattering at multi-screens, Integral Equations and Operator Theory, 84 (2016), pp. 33-68\(]\) for Maxwell's equations in frequency domain. The gist is a quotient space perspective that allows to make sense of jumps of traces as factor spaces of multi-trace spaces modulo single-trace spaces without relying on orientation. This paves the way for formulating first-kind boundary integral equations in weak form posed on energy trace spaces.
In this article we extend that idea to the Galerkin boundary element (BE) discretization of first-kind boundary integral equations. Instead of trying to approximate jumps directly, the new quotient space boundary element method employs a Galerkin BE approach in multi-trace boundary element spaces. This spawns discrete boundary integral equations with large null spaces comprised of single-trace functions. Yet, since the right-hand-sides of the linear systems of equations are consistent, Krylov subspace iterative solvers like GMRES are not affected by the presence of a kernel and still converge to a solution. This is strikingly confirmed by numerical tests.
Keywords: Complex screens, Galerkin Boundary Element Method, Quotient Space Boundary Element Method
BibTeX@Techreport{CGHU20_884, author = {X. Claeys and L. Giacomel and R. Hiptmair and C. Urzua-Torres}, title = {Quotient-Space Boundary Element Methods for Scattering at Complex Screens}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2020-11}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-11.pdf }, year = {2020} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).