Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Optimal, Globally Constraint-Preserving, DG(TD)2 Schemes for Computational Electrodynamics Based on Two-Derivative Runge-Kutta Timestepping and Multidimensional Generalized Riemann Problem Solvers – A von Neumann Stability Analysis
by R. Käppeli and D. S. Balsara and P. Chandrashekar and A. Hazra
(Report number 2020-25)
Abstract
Discontinuous Galerkin (DG) methods have become mainstays in the accurate solution of hyperbolic systems, which suggests that they should also be important for computational electrodynamics (CED). Typically DG schemes are coupled with Runge-Kutta timestepping, resulting in RKDG schemes, which are also sometimes called DGTD schemes in the CED community. However, Maxwell’s equations, which are solved in CED codes, have global mimetic constraints. In Balsara and Käppeli [von Neumann Stability Analysis of Globally Constraint-Preserving DGTD and PNPM Schemes for the Maxwell Equations using Multidimensional Riemann Solvers, Journal of Computational Physics, 376 (2019) 1108-1137] the authors presented globally constraint-preserving DGTD schemes for CED. The resulting schemes had excellent low dissipation and low dispersion properties. Their one deficiency was that the maximal permissible CFL of DGTD schemes decreased with increasing order of accuracy. The goal of this paper is to show how this deficiency is overcome. Because CED entails the propagation of electromagnetic waves, we would also like to obtain DG schemes for CED that minimize dissipation and dispersion errors even more than the prior generation of DGTD schemes.
Two recent advances make this possible. The first advance, which has been reported elsewhere, is the development of a multidimensional Generalized Riemann Problem (GRP) solver. The second advance relates to the use of Two Derivative Runge Kutta (TDRK) timestepping. This timestepping uses not just the solution of the multidimensional Riemann problem, it also uses the solution of the multidimensional GRP. When these two advances are melded together, we arrive at DG(TD)2 schemes for CED, where the first “TD” stands for time-derivative and the second “TD” stands for the TDRK timestepping. The first goal of this paper is to show how DG(TD)2 schemes for CED can be formulated with the help of the multidimensional GRP and TDRK timestepping. The second goal of this paper is to utilize the free parameters in TDRK timestepping to arrive at DG(TD)2 schemes for CED that offer a uniformly large CFL with increasing order of accuracy while minimizing the dissipation and dispersion errors to exceptionally low values. The third goal of this paper is to document a von Neumann stability analysis of DG(TD)2 schemes so that their dissipation and dispersion properties can be quantified and studied in detail.
At second order we find a DG(TD)2 scheme with CFL of 0.25 and improved dissipation and dispersion properties; for a second order scheme. At third order we present a novel DG(TD)2 scheme with CFL of 0.2571 and improved dissipation and dispersion properties; for a third order scheme. At fourth order we find a DG(TD)2 scheme with CFL of 0.2322 and improved dissipation and dispersion properties. As an extra benefit, the resulting DG(TD)2 schemes for CED require fewer synchronization steps on parallel supercomputers than comparable DGTD schemes for CED. We also document some test problems to show that the methods achieve their design accuracy.
Keywords: Computational electrodynamics, Discontinuous Galerkin, Higher order schemes, Two-derivative Runge-Kutta, Multidimensional generalized Riemann problem solver, von Neumann stability
BibTeX@Techreport{KBCH20_898, author = {R. K\"appeli and D. S. Balsara and P. Chandrashekar and A. Hazra}, title = {Optimal, Globally Constraint-Preserving, DG(TD)2 Schemes for Computational Electrodynamics Based on Two-Derivative Runge-Kutta Timestepping and Multidimensional Generalized Riemann Problem Solvers – A von Neumann Stability Analysis}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2020-25}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-25.pdf }, year = {2020} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).