Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Sparse twisted tensor frame discretization of parametric transport operators
by P. Grohs and Ch. Schwab
(Report number 2011-41)
Abstract
We propose a novel family of frame discretizations for linear, high-dimensional parametric transport operators. Our approach is based on a least squares formulation in the phase space associated with the transport equation and by subsequent Galerkin discretization with a novel, sparse tensor product frame construction in the possibly high-dimensional phase space. The proposed twisted tensor product frame construction exploits invariance properties of the parameter space under certain group actions and accounts for propagation of singularities. Specically, invariance of the parametric transport operator under rotations of the transport direction. We prove convergence rates of the proposed least squares Galerkin discretizations associated with the twisted tensor frames in terms of the number of degrees of freedom. In particular, sparse versions of the twisted tensor frame constructions are proved to break the curse of dimensionality, also for solution classes with low regularity in isotropic Sobolev spaces due to propagating singularities, uniformly with respect to the propagation directions.
Keywords:
BibTeX@Techreport{GS11_90, author = {P. Grohs and Ch. Schwab}, title = {Sparse twisted tensor frame discretization of parametric transport operators}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2011-41}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2011/2011-41.pdf }, year = {2011} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).