> simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > > simulation by means of second-kind Galerkin boundary element method.>> Source: Elke Spindler "Second-Kind Single Trace Boundary Integral>> Formulations for Scattering at Composite Objects", ETH Diss 23620, 2016."" > Research reports – Seminar for Applied Mathematics | ETH Zurich

Research reports

A biomimetic basis for the perception of natural sounds

by H. Ammari and B. Davies

(Report number 2020-32)

Abstract
Arrays of subwavelength resonators can mimic the biomechanical properties of the cochlea, at the same scale. We derive, from first principles, a modal time-domain expansion for the scattered pressure field due to such a structure and propose that these modes should form the basis of a signal processing architecture. We investigate the properties of such an approach and show that higher-order gammatone filters appear by cascading. Further, we propose an approach for extracting meaningful global properties from the coefficients, tailored to the statistical properties of so-called natural sounds.

Keywords: subwavelength resonance, metamaterials, auditory processing, gammatone filters, convolutional networks

BibTeX
@Techreport{AD20_905,
  author = {H. Ammari and B. Davies},
  title = {A biomimetic basis for the perception of natural sounds},
  institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich},
  number = {2020-32},
  address = {Switzerland},
  url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-32.pdf },
  year = {2020}
}

Disclaimer
© Copyright for documents on this server remains with the authors. Copies of these documents made by electronic or mechanical means including information storage and retrieval systems, may only be employed for personal use. The administrators respectfully request that authors inform them when any paper is published to avoid copyright infringement. Note that unauthorised copying of copyright material is illegal and may lead to prosecution. Neither the administrators nor the Seminar for Applied Mathematics (SAM) accept any liability in this respect. The most recent version of a SAM report may differ in formatting and style from published journal version. Do reference the published version if possible (see SAM Publications).

JavaScript has been disabled in your browser