Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
First-Kind Boundary Integral Equations for the Dirac Operator in 3d Lipschitz Domains
by E. Schulz and R. Hiptmair
(Report number 2020-69)
Abstract
We develop novel first-kind boundary integral equations for Euclidean Dirac operators in 3D Lipschitz domains comprising square-integrable potentials and involving only weakly singular kernels. Generalized Garding inequalities are derived and we establish that the obtained boundary integral operators are Fredholm of index zero. Their finite dimensional kernels are characterized and we show that their dimension is equal to the number of topological invariants of the domain’s boundary, in other words to the sum of its Betti numbers. This is explained by the fundamental discovery that the associated bilinear forms agree with those induced by the 2D surface Dirac operators for H−1/2 surface de Rham Hilbert complexes whose underlying inner-products are the non-local inner products defined through the classical single-layer boundary integral operators for the Laplacian. Decay conditions for well-posedness in natural energy spaces of the Dirac system in unbounded exterior domains are also presented.
Keywords: Dirac, Hodge-Dirac, potential representation, representation formula, jump relations, first-kind boundary integral operators, boundary integral equations, surface Dirac operators, coercivity
BibTeX@Techreport{SH20_942, author = {E. Schulz and R. Hiptmair}, title = {First-Kind Boundary Integral Equations for the Dirac Operator in 3d Lipschitz Domains}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2020-69}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2020/2020-69.pdf }, year = {2020} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).