Research reports
Years: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991
Traces for Hilbert Complexes
by R. Hiptmair and D. Pauly and E. Schulz
(Report number 2022-07)
Abstract
We study a new notion of trace operators and trace spaces for abstract Hilbert complexes. We introduce trace spaces as quotient spaces/annihilators. We characterize the kernels and images of the related trace operators and discuss duality relationships between trace spaces. We elaborate that many properties of the classical boundary traces associated with the Euclidean de Rham complex on bounded Lipschitz domains are rooted in the general structure of Hilbert complexes. We arrive at abstract trace Hilbert complexes that can be formulated using quotient spaces/annihilators. We show that, if a Hilbert complex admits stable "regular decompositions" with compact lifting operators, then the associated trace Hilbert complex is Fredholm. Incarnations of abstract concepts and results in the concrete case of the de Rham complex in three-dimensional Euclidean space will be discussed throughout.
Keywords: Trace, Hilbert complex, quotient space, annihilator, stable decomposition, trace complex, de Rham complex, fredholm
BibTeX@Techreport{HPS22_995, author = {R. Hiptmair and D. Pauly and E. Schulz}, title = {Traces for Hilbert Complexes}, institution = {Seminar for Applied Mathematics, ETH Z{\"u}rich}, number = {2022-07}, address = {Switzerland}, url = {https://www.sam.math.ethz.ch/sam_reports/reports_final/reports2022/2022-07.pdf }, year = {2022} }
Disclaimer
© Copyright for documents on this server remains with the authors.
Copies of these documents made by electronic or mechanical means including
information storage and retrieval systems, may only be employed for
personal use. The administrators respectfully request that authors
inform them when any paper is published to avoid copyright infringement.
Note that unauthorised copying of copyright material is illegal and may
lead to prosecution. Neither the administrators nor the Seminar for
Applied Mathematics (SAM) accept any liability in this respect.
The most recent version of a SAM report may differ in formatting and style
from published journal version. Do reference the published version if
possible (see SAM
Publications).