Zurich colloquium in mathematics

×

Modal title

Modal content

Bitte abonnieren Sie hier, wenn Sie über diese Veranstaltungen per E-Mail benachrichtigt werden möchten. Ausserdem können Sie auch den iCal/ics-Kalender abonnieren.

Herbstsemester 2019

Datum / Zeit Referent:in Titel Ort
22. Oktober 2019
17:15-18:15
Prof. Dr. Peter Bühlmann
ETH Zürich
Details

Zurich Colloquium in Mathematics

Titel Statistical Robustness, Stability and Interpretability of Algorithms
Referent:in, Affiliation Prof. Dr. Peter Bühlmann, ETH Zürich
Datum, Zeit 22. Oktober 2019, 17:15-18:15
Ort KO2 F 150
Statistical Robustness, Stability and Interpretability of Algorithms
KO2 F 150
5. November 2019
17:15-18:15
Prof. Dr. William Duke
UCLA, Los Angeles
Details

Zurich Colloquium in Mathematics

Titel Modular forms in arithmetic and geometry
Referent:in, Affiliation Prof. Dr. William Duke, UCLA, Los Angeles
Datum, Zeit 5. November 2019, 17:15-18:15
Ort KO2 F 150
Modular forms in arithmetic and geometry
KO2 F 150
19. November 2019
17:15-18:15
Dr. Ana Caraiani
Imperial College, London
Details

Zurich Colloquium in Mathematics

Titel Reciprocity laws for torsion classes
Referent:in, Affiliation Dr. Ana Caraiani, Imperial College, London
Datum, Zeit 19. November 2019, 17:15-18:15
Ort KO2 F 150
Abstract The Langlands program is a vast network of conjectures that connect many areas of pure mathematics, such as number theory, representation theory, and harmonic analysis. At its heart lies reciprocity, the conjectural relationship between Galois representations and modular, or automorphic forms. A famous instance of reciprocity is the modularity of elliptic curves over the rational numbers: this was the key to Wiles’s proof of Fermat’s last theorem. I will give an overview of some recent progress in the Langlands program, with a focus on new reciprocity laws for elliptic curves over imaginary quadratic fields.
Reciprocity laws for torsion classesread_more
KO2 F 150
17. Dezember 2019
17:15-18:15
Prof. Dr. Gigliola Staffilani
MIT
Details

Zurich Colloquium in Mathematics

Titel The Schrödinger equation as inspiration of beautiful mathematics
Referent:in, Affiliation Prof. Dr. Gigliola Staffilani, MIT
Datum, Zeit 17. Dezember 2019, 17:15-18:15
Ort KO2 F 150
Abstract Abstract: In recent years great progress has been made in the study of dispersive and wave equations. The toolbox used in order to attack highly nontrivial problems related to these equations has developed to include a variety of techniques from Fourier and harmonic analysis, analytic number theory, math physics, dynamical systems, probability and symplectic geometry. In this talk I will introduce a variety of problems connected with dispersive equations, such as the derivation of a certain nonlinear Schrodinger equations from a quantum many-particles system, periodic Strichartz estimates, the concept of energy transfer, the invariance of a Gibbs measure associated to an infinite dimension Hamiltonian system, and non-squeezing theorems for such systems when they also enjoy a symplectic structure.
The Schrödinger equation as inspiration of beautiful mathematicsread_more
KO2 F 150
JavaScript wurde auf Ihrem Browser deaktiviert