Preisträger 2019
Der Heinz Hopf Preis 2019 ging an den israelischen Mathematiker Professor Ehud Hrushovski für seine herausragenden Beiträge zur Modelltheorie und deren Anwendung auf Algebra und Geometrie.
Joël Mesot, Präsident der ETH Zürich, überreichte Ehud Hrushovski den Preis an der Preisverleihung am 28. Oktober 2019. Urs Lang, Vorsitzender des Heinz-Hopf-Komitees, und Lou van den Dries, Professor an der Universität Illinois, würdigten die Arbeit von Ehud Hrushovski.
Heinz Hopf Vorträge
Logic and geometry: the model theory of finite fields and difference fields
Ehud Hrushovski
Die Vorträge fanden am 28. und 29. Oktober 2019 statt.
Symposium
Dienstag, 29. Oktober 2019
Simplicity and complexity in model theory
externe Seite Maryanthe Malliaris (University of Chicago)
Abstract: Recent progress in model theory is changing our understanding of how the finite and infinite interact. One aspect of this story has to do with the emerging appearance of complexity within the so-called simple unstable theories, which provide a model theoretic framework for studying certain familes of 'random' objects, such as the theories of random graphs and hypergraphs, as well as pseudofinite fields.
Ample structures of finite Morley rank
externe Seite Katrin Tent (University of Münster)
Abstract: The model theoretic notion of ampleness captures essential properties of projective spaces over fields. From the model theoretic perspective it is natural to ask whether any sufficiently ample structure arises from a projective space and hence from a field. In this talk I will explain the question and present recent results on ample structures.
Hardy fields and transseries
externe Seite Lou van den Dries (University of Illinois)
Abstract: This is joint work with Matthias Aschenbrenner (UCLA) and Joris van der Hoeven (Ecole Polytechnique, Paris). We are aiming for what would be the ultimate extension result for Hardy fields. A \(Hardy\) \(field\) (Bourbaki) is a differential field of germs at \(+\infty\) of differentiable real-valued functions defined on intervals (\(a\), \(+\infty\)), with the derivation given by ordinary differentiation. Let \(H\) be a Hardy field. Then \(H\) is a totally ordered field by declaring for \(f \in H\):
\(f > 0 : \Longleftrightarrow f(t) > 0 \) eventually, that is, for all sufficiently large \(t\).
Let \(P(Y)\) be a differential polynomial over \(H\), and suppose \(P\) changes sign on \(H: P(f) < 0 < P(g)\), where \(f < g\) in \(H\). Then we conjecture that there exists a germ \(\phi\) in a Hardy field extension \(H\)∗ of \(H\) such that \(f < \phi < g\) and \(P(\phi) = 0\). At the time of writing this abstract the proof of this conjecture is not yet complete. A consequence would be: all maximal Hardy fields are elementarily equivalent to the ordered differential field \(\mathbb{T}\) of transseries.